
Notes on JSON-LD implementation for documenting

Datasets for EarthCube GeoCODEs platform

Stephen M. Richard
EarthCube GeoCODES team

September 22, 2022

Current version: Google Doc
(https://docs.google.com/document/d/1z5Jo4STSBZ-zr8mmJA4G3hikm0IHBTIgTTPcbjQHbYs)

Introduction 3

Schema.org Context 3

Mandatory Properties 4
Automatically populated 4

MetadataIdentifier 4
JSON-LD Object Type 4

User provided 5
Resource Name 5
Description 5
License 5
Preferred Dataset Identifier 5
Is available for free 6
Distribution 6

Recommended Properties for all resources 6
User provided 6

Type of Resource 6
Keywords 6
Citation 7
URL for formal metadata record 7
Other identifiers 8
Responsible Parties 8
Spatial Extent 9

Use GeoCoordinates for Point locations 9
Use bounding box for area extents 9
Handling multiple locations 10

Temporal Extent 11

https://docs.google.com/document/d/1z5Jo4STSBZ-zr8mmJA4G3hikm0IHBTIgTTPcbjQHbYs

Geologic Time 11
Variable Measured 11

Tier 1. Simple list of variable names 12
Tier 2: Names of variables with formal property types 12
Tier 3: Numeric values 13

Registration metadata. 14
Other Properties for all resources 15

Alternate Resource Name(s) 15
Version of the Dataset 15
Distribution Detail 16

Service instance distribution 16
Funding 20

Legacy implementation: 20
Current (post 03/2022) implementation: 21

Stewardship (Maintainer) property: 22
Related Resources 23

General Implementation patterns 23
Labeled Links 23
Agents 24
Array values 24
ECRR controlled vocabularies 24
EarthCube specific properties 24
Potential Action 25

Action properties 26
GeoCODES Action conventions 26

Known errors 28

Introduction

In the Google guide for describing datasets the only required fields are name and description; this is
sufficient to know that a dataset might exist, but insufficient for evaluating the described dataset for
utility or to access the data. The Google guide also recommends including the following schema.org
properties:

● url - Location of a page describing the dataset.
● sameAs - Other identifier strings that have been used to identify the dataset.
● version - The version number or identifier for this dataset (text or numeric).
● isAccessibleForFree - Boolean (true|false) specifying if the dataset is accessible for free.
● keywords - Keywords summarizing the dataset

https://developers.google.com/search/docs/data-types/dataset
https://schema.org/url
https://schema.org/sameAs
https://schema.org/version
https://schema.org/isAccessibleForFree
https://schema.org/keywords

● identifier - An identifier for the dataset, such as a DOI.
● variableMeasured- What does the dataset measure? (e.g., temperature, pressure)

These properties are all considered either mandatory or recommended for GeoCODES dataset
metadata. This document provides guidance for implementing Schema.org JSON-LD metadata to
document geoscience datasets that will be most compatible with the [EarthCube GeoCODES
resource registry and search application](https://geocodes.earthcube.org/). In addition to the Google
Developers Guidance, this metadata profile is based on the ESIP Science on Schema.org (SOSO)
guidance for datasets with some additional restrictions, interpretations, and recommendations for
interoperability.

A JSON (v7) schema that specifies the JSON serialization compatible with the existing (2022-07)
corpus of harvested GeoCODES metadata is available on GitHub. A slightly simplified, but more
restrictive, version of the JSON schema that will validate JSON-LD for use with the EarthCube
metadata editing forms is also available on GitHub. SHACL rules for validation of the JSON-LD as
rdf can be found in the GeoCODES-Metadata/metadata/OtherResource repository
(https://github.com/earthcube/GeoCODES-Metadata/tree/main/metadata/OtherResources).

Schema.org Context

If only schema.org vocabularies are used, the context should be:

"@context": {"@vocab":"http://schema.org/"},

If properties from other namespaces are used, the context defines the other namespaces thus:

"@context": {
"@vocab": "http://schema.org/",
"dcat": "http://www.w3.org/ns/dcat#",
"dc": "http://purl.org/dc/elements/1.1/",
"dct": "http://purl.org/dc/terms/",
"ecrro": "http://cor.esipfed.org/ont/earthcube/",
"ecrr": "https://n2t.net/ark:/23942/g2"

},

The above context is for example purposes, you only need to include the schema.org declaration
and any other prefixes used in your metadata. The “@vocab” key in the context assigns a
namespace to JSON keys that do not have a namespace prefix or other mapping defined in the
context. See discussion of http vs. https problems with schema.org in the ESIPfed Science on
Schema.org getting started document.

Mandatory Properties

The following properties MUST be populated in any GeoCODES schema.org metadata record to be
harvested into the GeoCODES repository and search application.

https://schema.org/identifier
https://schema.org/variableMeasured
https://developers.google.com/search/docs/advanced/structured-data/dataset
https://developers.google.com/search/docs/advanced/structured-data/dataset
https://github.com/ESIPFed/science-on-schema.org/blob/master/guides/Dataset.md
https://github.com/earthcube/GeoCODES-Metadata/blob/main/GeoCodes-DatasetSchema.json
https://github.com/earthcube/GeoCODES-Metadata/blob/main/GeoCodes-ECRR-DatasetSchema.json
http://schema.org/
https://github.com/ESIPFed/science-on-schema.org/blob/master/guides/GETTING-STARTED.md

Automatically populated

The following fields should be automatically populated by any metadata creation software.

MetadataIdentifier

● JSON key: ‘@id’.
● Value: string that is unique in the scope of the containing repository
● An identifier string for this metadata record, commonly a UUID with or without an HTTP

prefix for web resolution. NOTE that the identifier for the metadata record (this identifier) is
expected to be unique, and different from the identifier for the described resource. If record
identifiers are provided by a harvested data publisher, they must be checked for uniqueness
in the aggregating metadata repository.

JSON-LD Object Type

● JSON key: ‘@type’.
● Value: Class name from schema.org vocabulary; For data sets, the value MUST be

‘Dataset’.

User provided

Resource Name

● JSON key: ‘name’
● Value: text
● Short name by which this Dataset will be recognized by human users; should be unique in

the scope of the ECRR registry and informative enough to tell someone what the described
resource is.

Description

● JSON key: ‘description’
● Value: text (100 characters minimum)
● A text description of the Dataset. This text will be indexed by search aggregators, and the

information contained should be sufficient to tell a person what is in the dataset, how it was
acquired, any processing, and broadly how to use it. Provide as much detail as possible, so
that search engine text indexing will provide useful results. Feel free to copy and paste from
respective web sites, papers, reports, etc.

License

● JSON key: ‘license’
● Values: Array of labeled link objects, implemented as CreativeWork; range is a controlled

vocabulary of common licenses.
● This property identifies the statement of conditions for use and access to the described data.

Note it can be available under more than one license, so the value is serialized in a JSON
array (see Array Values note).

Example:

"license": [
{ "@type": "CreativeWork",

"name": "MIT",
"url": "https://opensource.org/licenses/MIT"

}],

Preferred Dataset Identifier

● JSON key: identifier
● Value: string
● A globally-unique URI, ideally using a scheme that can be dereferenced on the Web. HTTP

URI is preferred, but any URI scheme is allowed, e.g. ISSN, DOI, ARK, ISBN, URN:OGC..
For some formats, a legacy identifier string is in use and is also included. Science on
Schema.org recommendations suggest using a schema:PropertyValue object to document
the identifier, but in practice, URIs indicate their identifier scheme with the uri prefix (the part
before the first ‘:’ character), and http URI host names generally indicate the authority that
maintains the identifier.

 Example.
"identifier": "http://cor.esipfed.org/ont/earthcube/ecrro",

Is available for free

● JSON key: ‘isAccessibleForFree’
● Boolean value (true or false). True if the dataset is available at no (monetary) cost to the

user.

 Example.
"isAccessibleForFree": true,

Distribution

A Dataset metadata record MUST provide some link to a web location that will either directly
download the data, or guide user to a landing page or some other web location that will enable the
user to get the data described by the metadata record. In schema.org there are two approaches.
The schema:url property of the Dataset should point to a landing page, the way to describe how to
download the data directly is through the schema:distribution property. The "distribution" property
describes where to get the data and in what format by using the schema:DataDownload type. The
DataDownload allows a contentUrl property that is a URL that will directly access the data, and a url
that is a link to some intermediate web location that must be accessed to get the data. Thus the
requirement is that a Dataset metadata record provide one of schema:url,
schema:distribution/schema:DataDownload/schema:contentUrl or
schema:distribution/schema:DataDownload/schema:url.

https://github.com/ESIPFed/science-on-schema.org/blob/1.3.0/guides/Dataset.md#identifier
http://cor.esipfed.org/ont/earthcube/ecrro
https://schema.org/isAccessibleForFree
https://schema.org/url
https://schema.org/distribution
https://schema.org/DataDownload

Recommended Properties for all resources

User provided

Type of Resource

● JSON key: mainEntity
● This will be a constant for Datasets, and should be automatically populated. It is not

mandatory for harvesting into the metadata repository and index, but must be present for the
metadata to be edited by the EarthCube metadata editor form. The expected value is:
"mainEntity":[{

 "@type": "CreativeWork",
 "url": "http://schema.org/Dataset",
 "name": "Dataset"
 }],

Keywords

● JSON key: keywords
● Value: array of string.
● Index words to guide discovery, should include words or phrases that users might to enter

into search queries. The keywords MUST be provided as a JSON array of strings. Individual
keywords MUST not contain commas.

Example:
"keywords": ["Proteomics","ocean","microbial ecosystems",

"biogeochemistry"],

Note: The ESIPfed Science on Schema.org (SOSO) guidance allows adding keywords field in three
ways - a string, a URL, or using schema:DefinedTerm. The Schema.org guidance for
schema:keywords also presents options: “Multiple textual entries in a keywords list are typically
delimited by commas, or by repeating the property.” The SOSO guidance recommends using
schema:DefinedTerm if a keyword comes from a controlled vocabulary. Currently, the GeoCODES
harvester does not process DefinedTerm objects in the keywords array.

The various options for encoding keywords is nice for data providers, but makes harvesting
metadata complicated and fraught with error. Thus the GeoCODES convention is to include
keyword terms as individual q strings in an array of keywords.

Citation

● JSON key: additionalProperty
● Value: string
● The recommended string to use for referencing this resource in publications, using a

standard bibliographic format (50 characters minimum). This is implemented as a
schema.org additionalProperty. The schema.org citation property documentation states that
it should be used to provide references to related resources, not to recommend a citation for

the dataset documented by the schema.org record, which is the intention here. GeoCODES
recommendation is that links to related resources should be implemented using the
‘isRelatedTo’ property, see Related Resource section.

 Example:
"dct:bibliographicCitation": "Tatge, W.S., Nustad, R.A., and Galloway,

J.M., 2022, Data and scripts used in water-quality trend and load
analysis in the Heart River Basin, North Dakota, 1970–2020: U.S.
Geological Survey data release, access February 2022 at
https://doi.org/10.5066/P987APZ8.",

URL for formal metadata record

● JSON key: subjectOf
● Value: Array of DataDownload objects;
● The contentURL MUST access a metadata record using one of the more formal (and

complete) metadata schemes, like ISO19115 or EML. The encodingFormat is mandatory to
indicate the target metadata schema.

Example:
"subjectOf": [

{
"@type": "DataDownload",
"name": "Metadata ISO 19115-2 (NOAA Profile)",
"contentUrl":

“https://darchive.mblwhoilibrary.org/bitstream/1912/23718/4/NOAA_ISO19115-2.xml",
"encodingFormat": [

"http://www.isotc211.org/2005/gmd-noaa",
"application/xml"]
}],

Other identifiers

● JSON key: sameAs
● Value: array of strings
● Other identifier strings that have been used to identify the dataset. These might be URIs or

local identifiers.

Example:
"sameAs": ["http://repository.azgs.az.gov/uri_gin/azgs/dlio/245"],

Responsible Parties

● JSON key: any of creator, editor, contributor, or publisher
● Value: each key can have an array of values, each of which is an agent type defined in the

ECRR schema.
● Credit can be assigned to various agents (schema:Person or schema:Organization) using

the roles defined by schema.org, which include creator, editor, contributor, and publisher.

Any schema:Person or schema:Organization property can be included, but schema:name is
mandatory. If an identifier is available, it should be included.

Example:
"creator": [

{ "@type": "Person",
"name": "Nicholas McKay"

},
{ "@type": "Person",

"name": "Julien Emile-Geay"
}

],
"editor": [

{ "@type": "Person",
"name": "Giulietta S. Fargion",
"identifier":"https://orcid.org/0000-0005-3824-4100"

},
"publisher": [

{ "@type": "Organization",
"name": "Incorporated Research Institutions for Seismology

(IRIS)",
"identifier": "https://ror.org/05xkn9s74"

}
],

Spatial Extent

Spatial Extent document in GeoCODEs follows Science on Schema.org recommendations, with the
limitation that extents can only be expressed as a single point, a collection of points, a bounding
box, or a set of bounding boxes.

The Spatial Extent object documents the location on Earth that is the focus of the dataset content,
using schema:Place. For GeoCODES compatibility, use the schema:geo property with either a
schema:GeoCoordinates object to specify a point location, or a schema:GeoShape/schema:box
object to specify an area coverage extent. Coordinates describing these extents are expressed as
latitude longitude tuples (in that order) using decimal degrees.

Schema.org documentation does not specify a convention for the coordinate reference system;
GeoCODES assumes the reference system is WGS84. Spatial coverage location using other
coordinate systems can be included, see recommendation for specifying coordinate reference
systems, below.

Use GeoCoordinates for Point locations

Please indicate a point location by using a schema:GeoCoordinates object with schema:latitude and
schema:longitude properties.

https://schema.org/Place
https://schema.org/geo
https://schema.org/GeoCoordinates
https://schema.org/GeoShape
https://github.com/ESIPFed/science-on-schema.org/blob/1.3.0/guides/Dataset.md#spatial_reference-system
https://schema.org/GeoCoordinates
https://schema.org/latitude
https://schema.org/longitude

Point locations are recommended for data that is associated with specific sample locations,
particularly if these are widely spaced such that an enclosing bounding box would be a misleading
representation of the spatial location. Be aware that some client applications might only index or
display bounding box extents or a single point location.

A schema:Dataset that is about a point location would documented in this way:

{
...
"spatialCoverage": {

"@type": "Place",
"geo": {

"@type": "GeoCoordinates",
"latitude": 39.3280
"longitude": 120.1633

}
}

}

Use bounding box for area extents

A GeoShape box defines a rectangular area on the surface of the Earth defined by point locations
for the southwest corner and northeast corner of the rectangle in latitude-longitude coordinates.
Point locations are tuples of {latitude east-longitude} (y x). The schema.org GeoShape
documentation states "Either whitespace or commas can be used to separate latitude and
longitude; whitespace should be used when writing a list of several such points." Since the box is a
list of points, a space should be used to separate the latitude and longitude values. The two corner
coordinate points are separated by a space. 'East longitude' means positive longitude values are
east of the prime (Greenwich) meridian. A box where 'lower-left' (southwest) corner is
39.3280/120.1633 and 'upper-right' (northeast) corner is 40.445/123.7878 would be encoded thus:

"box": "39.3280 120.1633 40.445 123.7878"

For GeoCODES, East longitude values should be reported -180 <= X <= 180, consistent with the
WKT specification. Following this recommendation, bounding boxes that cross the antimeridian at
±180° longitude, the West longitude value will be numerically greater than the East longitude value.
For example, to describe Fiji the box might be

"box": "-19 176 -15 -178"

NOTES: Some spatial data processors will not correctly interpret the bounding coordinates across
the antimeridian even if they follow the recommended southwest, northeast corner convention,
resulting in boxes that span the circumference of the Earth, excluding the actual area of interest.
For applications operating with data in the vicinity of longitude 180, testing is strongly recommended
to determine if it works for bounding boxes crossing the antimeridian (+/- 180); an alternative is to
define two bounding boxes, one on each side of 180.

For bounding boxes that include the north or south pole, schema:box will not work. Recommended
practice is to use a schema:polygon to describe spatial location extents that include the poles.

https://schema.org/GeoShape
https://docs.opengeospatial.org/is/18-010r7/18-010r7.html#33

Handling multiple locations

If the spatial extent is best represented with multiple geometries, can publish those by making the
schema:geo field an array of GeoShape or GeoCoordinates like so:

{
...
"spatialCoverage": {

"@type": "Place",
"geo": [

{
"@type": "GeoCoordinates",
"latitude": -17.65,
"longitude": 50

},
{

"@type": "GeoCoordinates",
"latitude": -19,
"longitude": 51

},
...

]
}
...

}

Be aware that some client application might not index or display multiple geometries.

Temporal Extent

Temporal coverage is defined as "the time period during which data was collected or observations
were made; or a time period that an activity or collection is linked to intellectually or thematically (for
example, 1997 to 1998; the 18th century)" (ARDC RIF-CS). For documentation of Earth Science,
Paleobiology or Paleontology datasets, we are interested in the second case-- the time period that
data are linked to thematically.

Temporal coverage is a difficult concept to cover across all the possible scenarios. Schema.org
uses ISO 8601 time interval format to describe time intervals and time points, but doesn't provide
capabilities for geologic time scales or dynamically generated data up to present time.

Geologic Time

Dates or ages used for describing geological, archeological, and paleontological samples range
from the very simple to highly complex. A lava rock age could be simply described as 1.23 million
years old. Other ages are more descriptive. Some other examples are: a zircon crystal with an age
of 456.4 +/- 1.4 billion years (Ga) at a standard error of 2-sigma, a core with rocks from the Triassic
to the Jurassic, a carbon date of a bone with non-symmetrical uncertainties of 3242 (+160 -40) B.C.
We make use of the OWL time (Cox and Little) descriptive tags (elements), the Queensland

https://schema.org/geo
https://schema.org/GeoShape
https://schema.org/GeoCoordinates
https://documentation.ardc.edu.au/display/DOC/Temporal+coverage
https://en.wikipedia.org/wiki/ISO_8601#Time_intervals
https://w3c.github.io/sdw/time/

Department of Natural Resources, Mines and Energy Temporal Reference Systems (TRS), and
geoschemas properties to describe ages and age ranges in detail.

Variable Measured

A Dataset is a collection of data entities, each of which contains structured and unstructured values
for a set of properties about that entity. For example, consider three kinds of datasets that might be
collected about lakes: 1) a data table in CSV format containing columns of data that both classify
and measure the properties of a set of lakes in a region; 2) an image file containing rasterized
geospatial data values for each location for properties like water temperature at multiple depths;
and, 3) a text file containing responses to a survey assessing perspectives on water rights, with
values for questions containing both natural language responses and responses on a Likert scale.
In each of these examples, we are recording the value of attributes (aka properties) about an entity
of interest (lake). In schema.org, details about these attributes can be recorded using
schema:variableMeasured. So, while schema.org uses the term "variable" and the term
"measured", it is conceptualized as a listing of any of the properties or attributes of an entity that are
recorded. Use schema:variableMeasured to represent any recordable property of an entity that is
found in the dataset. While this includes quantitatively "measured" observations (e.g., rainfaill in
mm), it also includes classification values that are asserted or qualitatively assigned (e.g.,
"moderate velocity"), contextual attributes such as spatial locations, times, or sampling information
associated with a value, and textual values such as narrative text.

Schema.org allows the value of schema:variableMeasured to be a simple text string, but it is
strongly recommended to use the schema:PropertyValue type to describe the variable in more
detail. The ESIP Science on Schema.org recommendations outline several tiers of variable
description. Tier 1 is the simplest, with other tiers adding recommendations for additional content
(Tier 2 and 3). An Experimental Recommendations document contains proposed recommendations
for variables with with non-numeric or enumerated (controlled vocabulary) values, variables whose
values are structured objects (e.g. json objects, arrays, gridded data), or are references to external
value representations. The SOSO tiers are as follows:

Tier 1. Simple list of variable names

Provide a schema:name and a textual description of the variable. The schema:name should match
the label associated with the variable in the dataset serialization (e.g. the column name in a CSV
file). If the variable name in the dataset does not clearly convey the variable concept, a more
human-intelligible name can be provide using schema:alternateName. The field schema:description
is used to provide a definition of the variable/property/attribute that allows others to correctly
understand and interpret the values.

Example:
{

"@context": "https://schema.org/",
"@type": "Dataset",
"name": "Removal of organic carbon by natural bacterioplankton

communities ...",

https://vocabs.gsq.digital/object?uri=http://linked.data.gov.au/def/trs
https://geoschemas.org/extensions/temporal.html#properties
https://schema.org/PropertyValue
https://github.com/ESIPFed/science-on-schema.org/blob/1.3.0/guides

...
"variableMeasured": [

{
"@type": "PropertyValue",
"name": "latdd",
"alternateName":"latitude, decimal degrees",
"description": "Latitude where water samples were collected ...",

},
...

]
}

Tier 2: Names of variables with formal property types

Use schema:PropertyValue object to provide a schema:propertyID that better defines the semantics
of the variable than plain text can. This schema:propertyID should be a URI that resolves to a web
page providing a human-friendly description of the variable and, ideally, this identifier should also be
resolvable to obtain an RDF representation using a documented vocabulary for machine
consumption, for example a sosa:Observation or DDI represented variable. Describing the variables
with machine understandable vocabularies is necessary if you want your data to be interoperable
with other data, i.e., to be more FAIR. The property can be identified at any level of specificity,
depending on what the data provider can determine about the interpretation of the variable. For
example, one might use a propertyID for the property 'temperature', or use a more specific property
like 'water temperature', 'sea surface water temperature', or 'sea surface water temperature
measured with protocol X, daily average, Kelvins, xsd:decimal'. If there are choices, the most
specific property identifier should be used.

Example:
{

"@context": {
"@vocab": "http://schema.org/"

},
"@type": "Dataset",
"name": "Removal of organic carbon by natural bacterioplankton

communities ...",
...
"variableMeasured": [

{
"@type": "PropertyValue",
"name": "latdd",
"alternateName":"latitude, decimal degrees",
"propertyID":"http://purl.obolibrary.org/obo/NCIT_C68642",
"description": "Latitude where water samples were collected ...",

},
...

]
}

https://schema.org/propertyID
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://ddi-lifecycle-technical-guide.readthedocs.io/en/latest/Specific%20Structures/Data%20Description.html#represented-variable

Tier 3: Numeric values

For variables with numeric measured values, other properties of schema:PropertyValue can add
additional useful information:

● schema:unitText. A string that identifies a unit of measurement that applies to all values for
this variable.

● schema:unitCode. Value is expected to be TEXT or URL. We recommend providing an
HTTP URI that identifies a unit of measure from a vocabulary accessible on the web. The
QUDT unit vocabulary provides an extensive set of registered units of measure that can be
used to populate the schema:unitCode property to specify the units of measure used to
report data values when that is appropriate.

● schema:minValue. If the value for the variable is numeric, this is the minimum value that
occurs in the dataset. Not useful for other value types.

● schema:maxValue. If the value for the variable is numeric, this is the maximum value that
occurs in the dataset. Not useful for other value types.

● schema:measurementTechnique. A text description of the measurement method used to
determine values for this variable. If standard measurement protocols are defined and
registered, these can be identified via http URI's.

● schema:url Any schema:Thing can have a URL property, but because the value is simply a
url the relationship of the linked resource can not be expressed. Usage is optional. The
recommendation is that schema:url should link to a web page that would be useful for a
person to interpret the variable, but is not intended to be machine-actionable.

Example:
{

"@context": {
"@vocab": "https://schema.org/"

},
"@type": "Dataset",
"name": "Removal of organic carbon by natural bacterioplankton

communities as a function of pCO2 from laboratory experiments between
2012 and 2016",

"variableMeasured": [
{

"@type": "PropertyValue",
"name": "latitude",
"propertyID":"http://purl.obolibrary.org/obo/NCIT_C68642",
"url":

"https://www.sample-data-repository.org/dataset-parameter/665787",

https://schema.org/unitText
https://schema.org/unitCode
https://schema.org/minValue
https://schema.org/maxValue
https://schema.org/measurementTechnique
https://schema.org/url

"description": "Latitude where water samples were collected;
north is positive. Latitude is a geographic coordinate which refers to
the angle from a point on the Earth's surface to the equatorial plane",

"unitText": "decimal degrees",
"unitCode":"http://qudt.org/vocab/unit/DEG",
"minValue": "45.0",
"maxValue": "15.0"

},
...

]
}

Registration metadata.

This is a GeoCODES addition to track the provenance of the metadata content.
● JSON key: additionalProperty
● Value: implemented with a schema:StructuredValue object

Schema.org does not include elements for documenting the provenance of the metadata, so this
work around is implemented. This requires a value object, with a name and date published.
datePublished and contributor are not properties expected for schema:StructuredValue, so the
Schema.org validator will throw an error. Content in this element should be populated automatically
by metadata editing tools.

 Example:

 "additionalProperty":{
 "@type": "PropertyValue",
 "propertyID": "ecrro:ECRRO_0001301",
 "name": "registration metadata",
 "value": {
 "@type": "StructuredValue",
 "additionalType": "ecrro:ECRRO_0000156",
 "contributor":
 {"@type": "Person",
 "name": "Stephen M. Richard"},
 "datePublished": "2021-02-12T12:50:57-0700"
 }
 }

Other Properties for all resources

Alternate Resource Name(s)

● JSON key: alternateName
● Value: array of strings
● Other names by which the resource might be known or discovered. If names are provided in

a non-English language, please suffix a language identifier using the '@' delimiter and an
ISO-639-1 two letter language code, e.g.

Example:
"alternateName": ["WMO Binary Universal Form",

"Forme universelle binaire de l'OMM@fr"].

Version of the Dataset

● JSON key: version
● Value: string
● This property identifies a particular version of the Dataset if it is not identified by the

schema:identifier element.

Example:

"version":"0.6.2",

Distribution Detail

The distribution elements in Dataset metadata records describe the options for acquiring the actual
data, The schema data type for the distribution content is necessarily ‘schema: DataDownload’.
The distribution pattern follows the ESIP Science on Schema.org recommendations.

While the schema:url property of the Dataset should point to a landing page (web site), the
schema:distribution property describes how to download the data in various formats or through
different WebAPIs. The "distribution" property describes links on the web to get the data, and the
formats offered at those endpoints using the schema:DataDownload type. If your dataset is not
accessible through a direct download URL, the DataDownload link provided must be either
schema:url linking to a dataset landing page or form, or typed as a ‘WebAPI’ in addition to
DataDownload to document access through a service URL that may need input parameters jump to
the next section Accessing Data through a Service Endpoint.\

Service instance distribution

A service instance is a particular implementation of an Interface or API Specification. In the case of
WebAPI, the metadata must include a URL for the service endpoint.

URL

● JSON key: url

https://github.com/ESIPFed/science-on-schema.org/blob/1.3.0/guides/Dataset.md#distributions
https://schema.org/url
https://schema.org/distribution
https://schema.org/DataDownload
https://github.com/ESIPFed/science-on-schema.org/blob/1.3.0/guides/Dataset.md#dataset-service-endpoint

● Value: array of schema:LinkRole elements
● The schema:url field for a service instance should be the base url used for requests to the

service. Use of LinkRole allows distinction of various links that might be provided in the url
field. See example in schema.org documentation. For interoperability, the location of the
service endpoint must be identified with the linkRelationship ‘Service Endpoint Base
URL’

Example:

"url": [
{ "@type": "LinkRole",

"url": "http://service.iris.edu/irisws/timeseries/1/",
"linkRelationship": "Service Endpoint Base URL"

}],

Interface

● JSON key: additionalProperty
● Value: array of labeled links as schema:CreativeWork.
● Links to one or more specifications that document the service implemented by this service

instance. This property has no schema.org implementation, so it is implemented in the
schema:additionalProperty array. The identifier for the property is
http://cor.esipfed.org/ont/earthcube/ECRRO_0000503. Values are labeled links,
implemented as schema:CreativeWork, with a required name property and recommended
URL property. If no specification document is available, leave this property out.

Example:

"additionalProperty": [
{ "@type": "PropertyValue",

"propertyID": "ecrro:ECRRO_0000503",
"name": "Interface specification",
"value":[

{ "@type":"CreativeWork",
"name": "ePandda API specification",
"identifier":"http://n2t.net/ark:/23942/g2805001"}]

}],

Function

● JSON key: applicationCategory
● Value: array of string.
● This property specifies the kinds of activities supported by the service interface. The

schema.org applicationCategory property has an expected value that is Text or URL. For
the ECRR, a controlled vocabulary of software functions in the Earth Science research
realm was compiled (http://cor.esipfed.org/ont/earthcube/sfo, Table 7 in Function section,
below). String values should use this syntax: “function: ... uri: ...”. The function value is the
label associated with the ECRR URI in the function vocabulary

https://schema.org/LinkRole#eg-0227
http://cor.esipfed.org/ont/earthcube/sfo

Example:

"applicationCategory": [
"function: Data Exploration uri:

http://cor.esipfed.org/ont/earthcube/SFO_0000006",
"function: Data Analysis uri:

http://cor.esipfed.org/ont/earthcube/SFO_0000010"
],

Machine-readable endpoint

● JSON key: isRelatedTo
● Value: array of Product.
● This property has no direct schema.org implementation, so it is implemented as a link to a

related resource. The range expected for the schema:isRelatedTo property is
schema:Product. A name and URL are required. Name default is ‘Machine-readable
endpoint’.

Example:

"isRelatedTo": [
{ "@type": "Product",

"name": "Machine-readable endpoint",
"url": "http://service.iris.edu/fdsnws/station/1/application.wadl"

}],

Potential action

● JSON key: potentialAction
● Value: array of schema:Action elements (or subtypes)
● a Schema:potentialAction, with expected value schema:Action, and the action (typically

HTTP GET for a web application) is invoked via a url template specified in the
Action/target/EntryPoint. If a dataset can be passed as an argument in the url, it should be
indicated in the template with the template parameter ‘contentURL’. For example:

"urlTemplate": "https://lipd.net/playground?source={contentURL}”

For more information and an example, see discussion of Actions, below.

Conforms to

● JSON key: dct:conformsTo
● Value: array of schema:CreativeWork
● A list of one or more specifications that define the service operation. Implemented as labeled

links using schema:CreativeWork.

Example:

"dct:conformsTo": [

https://schema.org/Action
https://schema.org/EntryPoint

{ "@type": "CreativeWork",
"name": "Frictionless Data Data Package Specification",
"url": "https://specs.frictionlessdata.io/data-package/"

}],

Example of various distribution options:

"distribution": [
 {
 "@type": ["DataDownload"],
 "name": "Global Data Assembly Center (GDAC)",

"description": "For users interested in using the official Argo
NetCDF files, the GDACs should be the route to access Argo
data. Both GDACs offer access to the complete Argo data
collection as managed by the ...",

 "encodingFormat": ["application/x-netcdf"],
 "url": "http://www.argodatamgt.org/Access-to-data/Argo-GDAC-ftp-and-https-servers"

 },

 Website to visualize data online

 {
 "@type": [
 "DataDownload",
 "WebSite"],
 "name": "Argovis Web Site",

"description": "Visualize ARGO temperature, salinity, and
BioGeoChemical data by location. ...",

 "url": "https://argovis.colorado.edu/ng/home"
 },

 Website with list of available downloadable snapshots of dataset

 {
 "@type": [
 "DataDownload",
 "WebSite"],
 "name": "Zip archive snapshots",

"description": "snapshots of all GDAC data generated monthly since
2014, before that at irregular intervals back to 2012",

 "url": "https://www.seanoe.org/data/00311/42182/#",
 "encodingFormat": ["application/zip"]

 },

 Web API for direct data access

 {

 "@type": [
 "DataDownload",
 "WebAPI"],
 "name": "Argovis WebAPI",
 "serviceType": "Argovis API",
 "documentation":"https://argovis.colorado.edu/api-docs/#/",

"description": "Access Argo profiles via API, i.e. temperature,
salinity, and biogeochemical data by location. Argo metadata,
float trajectory forecasts, gridded fields, weather events are
also available through API",

 "potentialAction": {
 "@type": "SearchAction",
 "target": {
 "@type": "EntryPoint",
 "urlTemplate":

"https://argovis.colorado.edu/selection/profiles?startDate={start}&endDate
={end}&shape={shape}&presRange={presRange}",

"description": "download profiles within a bounding
box for specified start/end dates",

 "httpMethod": ["GET"]
 },
 "query-input": [

 details omitted; query parameters in the urlTemplate described here...

],
 "result": {
 "@type": "Dataset",
 "encodingFormat": "application/json"
 }
 }
 },

Funding

This property specifies the source or sources of financial support for the creation and maintenance
of the dataset. Note that the current (2022-02) implementation is based on schema.org entities
defined as of 2018. The proposed addition of a new property ‘funding’ was adopted by schema.org
in March, 2022. This section includes a description of the existing implementation, and the new
recommended implementation using the ‘funding’ property.

Legacy implementation:

● JSON key: funder
● Value: array of either Person, Organization, or Grant
● Person or Organization: Required name, recommended but optional identifier. Other person

or organization properties could be added

Grant: Required name of grant, and identifier if applicable/available, and the funding
organization implemented as schema:FundingAgency (a subclass of Project).
FundingAgency requires a name, and a recommended but optional identifier for the
organization.

Example:

"funder" : [
{ "@type": "Organization",

"name": "NOAA Coastal Services Center (NOAA-CSC)"
},
{ "@type": "Grant",

"name": "Award ICER 1541008",
"funder": {

"@type": "FundingAgency",
"name": "US NSF",
"identifier": "https://ror.org/021nxhr62"

}
}],

Current (post 03/2022) implementation:

"funding" : [
{ "@type": "Grant",

"sponsor": {
"@type": "Organization",
"name": "NOAA Coastal Services Center (NOAA-CSC)"

} },
{"@type": "Grant",

"name": "Award ICER 1541008",
"funder": {

"@type": "Organization",
"name": "US NSF",
"identifier": "https://ror.org/021nxhr62"

} }],

Stewardship (Maintainer) property:

● JSON key: additionalProperty
● Value: schema:PropertyValue//schema:DefinedTerm
● This property has no schema.org implementation, so it is implemented in the

schema:additionalProperty array (schema:maintainer is proposed in schema.org, and will
replace this property when adopted). The identifier for the property is
http://cor.esipfed.org/ont/earthcube/ECRRO_0000218. Could be person or organization,

https://schema.org/maintainer

with just a name string, a name string and identifier, or more information. For consistency,
always make value an object.

 Example Person:

"additionalProperty":
{"@type": "PropertyValue",

"propertyID": "ecrro:ECRRO_0000218",
"name": "Stewardship",
"value": {"@type": "Person",

"name": "Ben Best",
"url": "https://orcid.org/0000-0002-2686-0784"
}

},

 Example Organization:

"additionalProperty":
{ "@type": "PropertyValue",

"propertyID": "ecrro:ECRRO_0000218",
"name": "Stewardship",
"value":

{"@type":"Organization",
"name":"Frictionless Data Github Organization",
"url":"https://frictionlessdata.io/"}

},

Related Resources

● JSON key: isRelatedTo
● Value: array of JSON objects
● List of schema.org types, names and URLs for other resources of interest related to the

resource. The default type is CreativeWork, but a resource can be related to any kind of
schema.org entity that makes sense. The expected domain for schema:isRelatedTo is
schema:Product or schema:Service, thus the @type in the root of the metadata record
MUST include schema:Product (or Service) to validate. Value objects are required to have a
name property and a recommended URL property. Other properties consistent with the
defined @type can be included, for instance schema:description could be used to document
the relationship to the linked resource. [TBD-- investigate used of schema:LinkRole for this
use case].

Example:

"isRelatedTo": [
{ "@type": "CreativeWork",

"name": "Ocean Data View (ODV)",

"url": "https://odv.awi.de/"
}],

General Implementation patterns

Labeled Links

Schema.org does not provide a class for a labeled link -- i.e. a URL with a text string that can be
presented to users to clarify what the URL will get. The implementation approach used for the
EarthCube Resource Registry JSON-LD implementation is to use the schema.org CreativeWork
class, with just a name and url property. The intention is to support presenting links using html
anchor elements in a web page presentation of the metadata.

Example:

 {
"@type": "CreativeWork",
"name": "Creative Commons Attribution (CC BY)",
"url": "http://cor.esipfed.org/ont/CCL_0000001" }

In a web page, this would be presented as

Creative Commons Attribution (CC BY)

Agents

The ECRR agent type is used to cite persons or organizations who play some role related to the
described resource. The agent object has an @type value that is either Person or Organization. A
name (string) is required, and an identifier (e.g. ORCID for person, ROR for Organization) is
recommended. Other Person or Organization properties defined by schema.org can be included as
well.

Example person:

{ "@type": "Person",
"name": "Nicholas McKay",
"identifier": "https://orcid.org/0000-0001-6022-8304" },

Example organization:

{ "@type": "Organization",
"name": "US National Science Foundation (US NSF)",
"identifier": "https://ror.org/021nxhr62" }

http://cor.esipfed.org/ont/CCL_0000001
http://cor.esipfed.org/ont/CCL_0000001
https://ror.org/021nxhr62

Array values

If a property value is 0..*, all values will be encoded in a JSON array. This is to simplify parsing the
JSON documents. If no value is available, and the property is optional, leave it out. If the property is
required, provide a value with an explicit null e.g. urn:ogc.def.null.missing. This is not an issue if
the JSON will be parsed as JSON-LD rdf.

ECRR controlled vocabularies

ECRR vocabularies are published via the ESIP Community Ontology Repository
(http://cor.esipfed.org/ont/#/). For maintenance of vocabularies and suggestions for new terms, a
listing is available in a google document
(https://docs.google.com/spreadsheets/d/1ykxgdeDjBzcTc1y64CuyaS2PhDuUtLuO5AFUehwhxDs)

EarthCube specific properties

The resource registry information model (http://cor.esipfed.org/ont/earthcube/ecrro) defines a
number of properties that are not included in the Schema.org vocabulary. Most of these are not
required for DataSets, but might be useful. In some cases, properties from other vocabularies are
used (e.g. dcat, Dublin Core Terms). If no good match was found in an existing vocabularies, the
ECRR ontology defines a new property. In either case, our schema.org JSON-LD implementation
implements these in a schema:additionalProperty array of schema:PropertyValue instances. This
allows use of the schema:propertyID to contain the URI for the externally defined property, a
user-friendly label for the property in the name element, and property values to be specified using
various schema.org classes. Schema:PropertyValue/value elements have an expected range that
includes Boolean, Number, StructuredValue, or Text. The ECRR implementation uses other
schema.org classes as values, including Person, Organization, CreativeWork, and DefinedTerm.
This results in errors from the schema.org validator, but the JSON-LD is valid because schema.org
does not define rigid domain and range constraints on properties. Some examples:

Additional property value is a string:

 {"@type": "PropertyValue",
 "propertyID": "dc:BibliographicCitation",
 "name": "Bibliographic citation",
 "value": {"@type": "Text",
 "value": "Martin Isenburg, 2021, LAStools, rapidlasso GmbH,

Gilching, GERMANY, https://rapidlasso.com/lastools/"
 },

Additional property value has a name/label and identifier, possibly a description; implement with
schema:DefinedTerm.

 {"@type": "PropertyValue",
 "propertyID": "eccro: ECRRO_0000138",

http://cor.esipfed.org/ont/#/
https://docs.google.com/spreadsheets/d/1ykxgdeDjBzcTc1y64CuyaS2PhDuUtLuO5AFUehwhxDs
http://cor.esipfed.org/ont/earthcube/ecrro

 "name": "has maturity state",
 "value": {
 "@type": "DefinedTerm",
 "name": "In production",
 "identifier": "http://cor.esipfed.org/ont/earthcube/MTU_0000002"
 } },

Potential Action

Machine actionable documentation for interactions with software agents on the web using
schema.org has been a long topic of discussion in the community, e.g. [WebAPI
update](https://github.com/schemaorg/schemaorg/pull/2635). Any schema.org thing has a
potentialAction property with expected value of type Action or one of its subtypes. In order to
implement more frictionless linkage between data and applications using the data, the GeoCODEs
team has developed a set of conventions for using Action properties to support automation. The
potentialAction property is used on resources that have ECRR type (schema:mainEntity)
Catalog/Registry (ecrro:ECRRO_0000212), Service Instance (ecrro:ECRRO_0000202), or Software
(ecrro:ECRRO_0000206).

The Actions of interest for the EarthScience research community are the functions identified in the
EarthCube software function vocabulary (http://cor.esipfed.org/ont/earthcube/sfo). The ECRR action
type can be categorized using the schema:additionalType property, with a range defined by the
values in the EarthCube software function vocabulary (http://cor.esipfed.org/ont/earthcube/sfo).

This section starts with a summary of the properties on schema:Action, followed by the conventions
for using those properties in the ECRR.

Action properties

Result
The ‘result’ property documents the outcome of an Action. For the purposes of machine-actionable
automation, the results of interest are file-based resources that can be delivered electronically. The
purpose of the file content in a research workflow is out of scope, but documentation of the result
needs to specify the kind of file produced-- the interchange format.

Target
The ‘target’ property documents the endpoint that receives requests to invoke an action, and the
syntax for how that request is formulated.

Query-input
The ‘query-input’ property is a set of property values specifications that document parameters
required to invoke the described action, typically slots in a urlTemplate for the target entry point.

Object

https://github.com/schemaorg/schemaorg/pull/2635
http://cor.esipfed.org/ont/earthcube/sfo
http://cor.esipfed.org/ont/earthcube/sfo

In a resource-oriented architecture on the web, requests for actions are targeted to a particular
resource (the ‘object’). This target resource has some electronic representation, and in some cases
it is useful to know the information model for the object of an action request.

GeoCODES Action conventions

● Action>additionalType: categorizes the action using the ECRR software function vocabulary
(http://cor.esipfed.org/ont/earthcube/sfo).

Action>result
● @type: categorizes the kind of result produced by the action, using the schema.org entity

types. Default value is ‘schema:Dataset’, for actions that return a serialized bundle of data.
● encodingFormat: an array of file-format strings, can include base MIME types, but should

include types from the ECRR formats registry
(https://github.com/earthcube/GeoCODES-Metadata/blob/main/resources/encodingFormat.c
sv), which provide more granular categories for file types.

● conformsTo: array of identifier for specification(s) that documents the action response
serialization and information model.

Action>target
● @type: MUST be schema:EntryPoint, which defines the location designation and syntax for

requests to invoke the Action.
● urlTemplate: (required) For Catalog/Registry and ServiceInstance, a URL template

conforming to IETF RFC6570, used to invoke the Action (parameters are documented in the
following query-input element. For software, any kind of template that will assist users to
invoke the Action on the software is recommended.

● httpMethod: Default is GET. Conventions for interoperable description of requests using
other HTTP methods (e.g. POST, DELETE, PUT) have not been developed.

● contentType: an array of content (MIME) types that can be requested in the HTTP accept
header, if the content type is not specified in the urlTemplate. MUST be consistent with
result>encodingFormat values.

Action>query-input
● An array of schema:PropertyValueSpecification that define the parameters in the

target>urlTemplate.
○ valueName: (required) name of the parameter as it appears in the target>urlTemplate
○ description: (required) text explaining the usage of the parameter
○ Other properties that can be specified are documented in the schema.org

PropertyValueSpecification page (https://schema.org/PropertyValueSpecification)

Action>Object
● @Type: default is DataSet, assuming the Action is invoked against some data schema.

Semantics and utilization are fuzzy.
● additionalType: categorization of the kind of resource that is the object of the Action, if there

is something more specific (and useful) than Dataset or one of the other Schema.org
entities.

http://cor.esipfed.org/ont/earthcube/sfo
https://datatracker.ietf.org/doc/html/rfc6570
https://schema.org/PropertyValueSpecification

● variableMeasured: if a parameter in the URL template allows specification of one of the
variables from the object data, the list of variable in the object data schema should be listed
and documented here.

Example:

 "potentialAction": [
 {
 "@type": "SearchAction",
 "additionalType": "ecrro:SFO_0000005",
 "name": "Query",
 "description": "query service to obtain records of seismic events",
 "result":
 {
 "@type": "DataDownload",
 "encodingFormat": [

"application/xml+QuakeML",
"text/csv;type=GeoCSV-GeoWS”],

"description": "XML (QuakeML) or csv format for seismic event
following EarthCube geoWs conventions."

 },
 "target": {
 "@type": "EntryPoint",

"urlTemplate":"http://service.iris.edu/fdsnws/event/1/query?
{start}&{end}&{minmag}&{maxmag}&{format}",

 "description": "URL with multiple query parameters",
 "httpMethod":"GET",
 },

 "query-input": [
 {
 "@id": "urn:iris:fsdn.starttime",
 "@type": "PropertyValueSpecification",
 "valueName": "start",
 "description": "allowed: Any valid time. Limit to events on or

after the specified time; use UTC for time zone",
 "valueRequired": true,
 "xsd:type": "dateTime"
 },
 ... (a couple example parameters),
 ...,
 {
 "@id": "urn:iris:fsdn.maxmagnitude",
 "@type": "PropertyValueSpecification",
 "valueName": "maxmag",
 "defaultValue": "Any",

"description": "Limit to events with a magnitude smaller than
the specified maximum.",

 "valueRequired": true,
 "xsd:type": "float",
 }
]

 "object": {
 "@type": "DataSet",
 "description": "list of properties that are included in seismic
event description in the source data system",
 "variableMeasured": [
 {
 "@type": "PropertyValue",
 "name": "name of the variable",
 "propertyID": "URI for the property in some ontology",
 "measurementTechnique": "URI for the measurement protocol, or
text description of procedure and sensor"
 }] }
 }

Known errors

